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1 LCAO Approach to Linear m-Conjugated Systems

A simple MO treatment to a linear chain of N sp?-hybridized carbon atoms describes the 7
molecular orbitals as a set of linear combinations of the constituing p, atomic orbitals, the
members of the basis set.
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This results in a set of linear equations that can be written in matrix form and solved
from the secular determinant:
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In the case of molecule where N > 2, the full MO treatment becomes more difficult to

solve manually as the secular determinant becomes large but can be straightforwardly done
using mathematical software.

2 The Electron in a 1D Box Model
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Figure 1: Schematic representation of the potential of a particle in a one-dimensional box
with infinite boundary potential



In a first approximation, a polyacetylene molecule can be considered as a one-dimensional
chain of carbons. An electron in this molecule contributing to its m-bonding can be regarded
as free to roam along this one-dimensional segment in space, but is not allowed to leave the
segment boundaries. With this approximation, one can reason that the quantum states in
the poly(acetylene) molecule with N atoms can be approximated by the quantum states of
an electron in a potential well of size L = (N — 1)a with infinite boundary potential, where
a is the interactomic distance assumed to be equal between all carbons of the molecule We
can define such a potential well as a function of a spatial coordinate which lies along the
molecule axis (Figure 1).

The probability of finding the electron outside of the well is 0, i.e. |¥|*> = 0. The
boundary conditions are as follows:
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U(z)=0 V ggx & xﬁ—g (4)
So we are looking for W(x) such that
n* o? L L
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By introducing the wave number £

k:«/th—b;(:):) (6)

The equation becomes the equation of the harmonic oscillator

U (x) = —K*U(x) (7)

This equation has the general solution
U(z) = Asin(kzx) + Bceos(kx) (8)

which imposes the shape of the wavefunction. A mathematical consequence of the symmetry
of the potential well is that W(x) must have a defined parity, i.e. the function must be either
odd or even. We have then

A=0 or B=0 (9)
U(z) = Beos(kx) or VY(z)= Asin(kx) (10)
With ¥(+£) =0 we have
Bcos(k‘g) =0 or Asm(kg) =0 (11)
=
kL =2n+1)r or kL=2nrw (12)



The wavenumber is thus quantified

k= "% neN (13)
However, n cannot take all allowed values as some solutions would have no physical sense.
Indeed, n = 0 is excluded because V(z) = 0 everywhere and thus the probability to find the

electron would be null, |¥(z)|? = 0. Moreover, Also n and —n give rise to the same quantum

states
If U(z) is even V_,(x)=V,,(z) Yz (14)
If U(zr) is odd ¥_,(x)=¢e"V,,(r) Vz
In both cases
O (@) * = [V_p(2)* Vo (15)

Thus the quantum numbers n € N™* that is, n € {1, +00}. With (6) and (13) we now know
that k is quantified and we can conclude that E is independent of x but quantified, as well.
Indeed,
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n? = Ein? (16)

Now that we have found an expression for £, we can also determine A and B. The probability
that an electron, occupying the energy level n, is found anywhere in space is |V, |>=1. With
the consideration of (4),

[T = (V0| V) (17)
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For the case where n is odd, because of the boundary conditions (3), ¥, (x) will take the

following form
nm

U, (x) = Bcos(fx) (20)
Thus
+3 nm nm
U, |> = B*cos(—x)Bcos(—z)dx (21)
-L L L
R
= |B|2/ cos®(—x)dx (22)
L L
5 1 nm 1
— 2 _ _ Z
= |B| /_g (2005(2 7 x)+ 2)daﬁ (23)
using
cos(x +y) = cos(x)cos(y) — sin(z)sin(y) and 1= cos*(z) + sin*(x) (24)
Continuing from (23)
1 2nmx x 3 L
= |B|? |=si = = |B|*= 2
B |qsin T+ S e - 15P (25)
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Thus
L 2
B~ =1 B=44/> 26
BPS e (26)

Proceeding in the same way for an even n, we obtain

A:i%% (27)

As for +n and —n we obtain the same quantum states, we can just take the positive value
and we have thus obtained the solutions to the quantum states of a particle in a box in an
infinite potential well of length L

m@g:vgwq%@ Y odd n € N+
(28)
U, (x) =/ 2sin(®x) Vevenn e Nt
Each associated with the energies
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Figure 2: Wavefunctions and energy levels of a particle in a one-dimensional box

For the quantum states of a linear molecule with N carbon atoms, we noted L = (N —1)a.
Moreover, we know that there are as many MO quantum states as there are constituting
members of the basis set, so in this case N 2p, atomic orbitals. The final solution is thus

U, (r) = (Nfl)acos((NTl)aa:) Voddne{l,..,N} (30)
U, (x) = (Nfl)asin((N”_’rl)ax) Vevenne {l,..,N}
Each associated with the energies
T2 h?
E, = En’ E, = 31
T T o (N — 1)2a2 (31)



3 The Huckel Method

While the electron in a 1D box model correctly accounts for quantization, the obtained energy
levels significantly deviate from experimental values. A somewhat more rigorous approach
is given by the Hiickel Method, which is a further simplification of the LCAO approach.
This method is specific to the case of m-conjugated molecules and aims to describe only the
7w molecular orbitals resulting from an interaction of the constituting 2p, orbitals, indepen-
dently of the framework of o bonds. Then, it is assumed that there is no overlap between
distinct 2p, orbitals as well as that any Hamiltonian integral vanishes if it involves atoms
i and j that are not nearest neighbours. Furthermore, it states that all similar interactions
are equal for all orbitals, ie. Vi € [1, N] oy =« and By =0

Therefore, in this model the secular equation in the case of the poly(acetylene) molecule
with N atoms becomes

a—LE 5 0 0

o —0 (32)
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With N rows and N columns in the determinant. Solving this secular equation, that is,
finding the F,, for which it is fulfilled, is equivalent to solving the system of equations from
which the determinant was actually deduced, which involve the coefficients (cy, ..., cy) in the
LCAO describing the MO. This system can be rewritten in matrix form as the following
eigenvalue equation

a B0 0 1 €1
0 - F & TC = EC (33)
o
B
0 05 o CN CN

By construction of the MO, we have ¢y = cy41 = 0 as boundary conditions. With j € [1, N],
the product of j** row of T with the vector C, the j* component of the vector EC, corre-
sponds to

EC]' = BC]'_1 + Qac; + BCJ‘_H (34)

Then, (c1, ..., cy) are the terms from 1 to N of the sequence (¢;);en fulfilling

Co = 0 & CN+1 = 0 Vj S N, BCJ‘ + (CY — E)Cj_H + /BC]‘+2 =0 (35)



We have a linearly recursive sequence of order two and it is known from that the general term
of such sequence can be expressed as a function of the roots of the characteristic polynomial
associated to the sequence, which is in this case

B+ (a—E)yr+pr2=0 (36)

If the characteristic polynomial admits two distinct roots, the general term would be

cr = Mk prk (37)

while if there is a double root rqg = r; = ro, it would be

e = (A + pk)ry (38)
with A and p € C.
The solution of the characteristic polynomial cannot be the double root 0, as it would give
(¢j)jen = (0)jen. However, if (0);eqr,ng is the only solution of (35) it means that E is not an
Eigenvalue. Indeed, an Eigenvalue is, by definition, associated to a non-null Eigenvector.

If the solution would be a non-null double root, according to the boundary conditions (36)
and (37), we would find by injecting them in (41)

A=0 and p=0 (39)

then, we would also have (¢;)jen = (0)jen. Therefore, the characteristic polynomial must
admit two distinct roots.

If one of the two distinct roots was, for instance, ro = 0, (40) would become
e = At (40)

With the boundary conditions (36), we would then have A = 0 and thus (¢;)jen = (0)jen-
Hence, the characteristic polynomial must admits two distinct non-null roots.

Furthermore, by injecting the boundary conditions (36) and (37) in (40), we have

N+1 N+1
cni1 = Ay Ty T =10

=

A=—p
{(T_1 N+1 _ 1 (42)

T2

Then, 2 is an (N + 1)th root of unity, that is,

ro
1

— /%41 with n € [1, N] (43)
()

Thus,
|ra| = |r1] (44)
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Additionally, since the coefficients in the characteristic polynomial are real numberss, the

roots are conjugated, that is,
Te =11

It exists 6 such that r; and r, can be written

ry = |ri|e®
Ty = |ryle=®

Therefore,
T 2o
T2
Then, with (46)
g_ T
(N+1)

(45)

(46)

(47)

(48)

As r; and 7y are the roots of the characteristic polynomial (39), their product and sum

can be expressed as a function of the coefficients

=8_1
179 3 L (49)
1 + ro = —QT
but because r; and 7y are conjugated we also have
riry =TT = |7“1|2 (50)
=
‘7“1| =1 (51)
and
™M +reo=7r1+7r = QRG{Tl} (52)
= 2Re{c'wn | (53)
nmw nm
=2R ) si 54
e{cos((N+1))+181n((N+1>)} (54)
nmw
=9 5h)
cos((N n 1)) (55)
=
nmw a—F
2 =— 56
cos (1)) =~ (56)
Therefore, F is quantified
En:cH—Qﬁcos(Nn 17?) with n € [1, N] (57)

Each E, is associated to the MO built from the LCAO of 2p, orbitals with the coefficients

- _knm

cp = MV + B_i%) = \2isin (

””1) with & € [1, N] (58)

where A can be determined using the normalization condition (U, |¥,) = 1.
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