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1 LCAO Approach to Linear π-Conjugated Systems

A simple MO treatment to a linear chain of N sp2-hybridized carbon atoms describes the π
molecular orbitals as a set of linear combinations of the constituing pz atomic orbitals, the
members of the basis set.

Φi =
∑
j

cijψij, with i, j = 1 . . . N (1)

This results in a set of linear equations that can be written in matrix form and solved
from the secular determinant:∣∣∣∣∣∣∣∣

α11 − E β21 − ES21 . . . βN1 − ESN1

β12 − ES12 α22 − E . . . .
. . . . . .

β1N − ES1N . . . . αNN − E

∣∣∣∣∣∣∣∣ = 0 (2)

In the case of molecule where N > 2, the full MO treatment becomes more difficult to
solve manually as the secular determinant becomes large but can be straightforwardly done
using mathematical software.

2 The Electron in a 1D Box Model

Figure 1: Schematic representation of the potential of a particle in a one-dimensional box
with infinite boundary potential
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In a first approximation, a polyacetylene molecule can be considered as a one-dimensional
chain of carbons. An electron in this molecule contributing to its π-bonding can be regarded
as free to roam along this one-dimensional segment in space, but is not allowed to leave the
segment boundaries. With this approximation, one can reason that the quantum states in
the poly(acetylene) molecule with N atoms can be approximated by the quantum states of
an electron in a potential well of size L = (N − 1)a with infinite boundary potential, where
a is the interactomic distance assumed to be equal between all carbons of the molecule We
can define such a potential well as a function of a spatial coordinate which lies along the
molecule axis (Figure 1).

The probability of finding the electron outside of the well is 0, i.e. |Ψ|2 = 0. The
boundary conditions are as follows:

Ψ(
L

2
) = Ψ(−L

2
) = 0 (3)

because

Ψ(x) = 0 ∀ L

2
≤ x & x ≤ −L

2
(4)

So we are looking for Ψ(x) such that

− ~2

2m

∂2

∂x2
Ψ(x) = E(x)Ψ(x) ∀ x ∈]− L

2
,
L

2
[ (5)

By introducing the wave number k

k =

√
2mE(x)

~2
(6)

The equation becomes the equation of the harmonic oscillator

Ψ′′(x) = −k2Ψ(x) (7)

This equation has the general solution

Ψ(x) = Asin(kx) +Bcos(kx) (8)

which imposes the shape of the wavefunction. A mathematical consequence of the symmetry
of the potential well is that Ψ(x) must have a defined parity, i.e. the function must be either
odd or even. We have then

A = 0 or B = 0 (9)

Ψ(x) = Bcos(kx) or Ψ(x) = Asin(kx) (10)

With Ψ(±L
2
) = 0 we have

Bcos(k
L

2
) = 0 or Asin(k

L

2
) = 0 (11)

⇒

kL = (2n+ 1)π or kL = 2nπ (12)
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The wavenumber is thus quantified

k =
nπ

L
n ∈ N (13)

However, n cannot take all allowed values as some solutions would have no physical sense.
Indeed, n = 0 is excluded because Ψ(x) = 0 everywhere and thus the probability to find the
electron would be null, |Ψ(x)|2 = 0. Moreover, Also n and −n give rise to the same quantum
states {

If Ψ(x) is even Ψ−n(x) = Ψ+n(x) ∀x
If Ψ(x) is odd Ψ−n(x) = eiπΨ+n(x) ∀x

(14)

In both cases
|Ψ+n(x)|2 = |Ψ−n(x)|2 ∀x (15)

Thus the quantum numbers n ∈ N+∗, that is, n ∈ {1,+∞}. With (6) and (13) we now know
that k is quantified and we can conclude that E is independent of x but quantified, as well.
Indeed, √

2mEn
~2

=
nπ

L
⇔ En =

π2~2

2mL
n2 = E1n

2 (16)

Now that we have found an expression for E, we can also determine A and B. The probability
that an electron, occupying the energy level n, is found anywhere in space is |Ψn|2=1. With
the consideration of (4),

|Ψn|2 = 〈Ψn|Ψn〉 (17)

=

∫ +∞

−∞
Ψ∗n(x)Ψn(x)dx (18)

=

∫ +L
2

−L
2

Ψ∗n(x)Ψn(x)dx (19)

For the case where n is odd, because of the boundary conditions (3), Ψn(x) will take the
following form

Ψn(x) = Bcos(
nπ

L
x) (20)

Thus

|Ψn|2 =

∫ +L
2

−L
2

B∗cos(
nπ

L
x)Bcos(

nπ

L
x)dx (21)

= |B|2
∫ +L

2

−L
2

cos2(
nπ

L
x)dx (22)

= |B|2
∫ +L

2

−L
2

(
1

2
cos(2

nπ

L
x) +

1

2
)dx (23)

using
cos(x+ y) = cos(x)cos(y)− sin(x)sin(y) and 1 = cos2(x) + sin2(x) (24)

Continuing from (23)

= |B|2
[

1

4
sin(

2nπx

L
) +

x

2
+ c

]+L
2

−L
2

= |B|2L
2

(25)
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Thus

|B|2L
2

= 1⇔ B = ±
√

2

L
(26)

Proceeding in the same way for an even n, we obtain

A = ±
√

2

L
(27)

As for +n and −n we obtain the same quantum states, we can just take the positive value
and we have thus obtained the solutions to the quantum states of a particle in a box in an
infinite potential well of length LΨn(x) =

√
2
L
cos(nπ

L
x) ∀ odd n ∈ N+∗

Ψn(x) =
√

2
L
sin(nπ

L
x) ∀ even n ∈ N+∗

(28)

Each associated with the energies

En = E1n
2 , E1 =

π2~2

2mL2
(29)

Figure 2: Wavefunctions and energy levels of a particle in a one-dimensional box

For the quantum states of a linear molecule with N carbon atoms, we noted L = (N−1)a.
Moreover, we know that there are as many MO quantum states as there are constituting
members of the basis set, so in this case N 2pz atomic orbitals. The final solution is thusΨn(x) =

√
2

(N−1)acos(
nπ

(N−1)ax) ∀ odd n ∈ {1, ..., N}

Ψn(x) =
√

2
(N−1)asin( nπ

(N−1)ax) ∀ even n ∈ {1, ..., N}
(30)

Each associated with the energies

En = E1n
2 , E1 =

π2~2

2m(N − 1)2a2
(31)
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3 The Hückel Method

While the electron in a 1D box model correctly accounts for quantization, the obtained energy
levels significantly deviate from experimental values. A somewhat more rigorous approach
is given by the Hückel Method, which is a further simplification of the LCAO approach.
This method is specific to the case of π-conjugated molecules and aims to describe only the
π molecular orbitals resulting from an interaction of the constituting 2pz orbitals, indepen-
dently of the framework of σ bonds. Then, it is assumed that there is no overlap between
distinct 2pz orbitals as well as that any Hamiltonian integral vanishes if it involves atoms
i and j that are not nearest neighbours. Furthermore, it states that all similar interactions
are equal for all orbitals, ie. ∀i ∈ J1, NK αii = α and βi,i+1 = β

Therefore, in this model the secular equation in the case of the poly(acetylene) molecule
with N atoms becomes

α− E β 0 0

β

0

0

β

0 0 β α− E

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (32)

With N rows and N columns in the determinant. Solving this secular equation, that is,
finding the En for which it is fulfilled, is equivalent to solving the system of equations from
which the determinant was actually deduced, which involve the coefficients (c1, ..., cN) in the
LCAO describing the MO. This system can be rewritten in matrix form as the following
eigenvalue equation

α β 0 0

β

0

0

β

0 0 β α





c1

cN




= E

c1

cN




⇔ TC = EC (33)

By construction of the MO, we have c0 = cN+1 = 0 as boundary conditions. With j ∈ J1, NK,
the product of jth row of T with the vector C, the jth component of the vector EC, corre-
sponds to

Ecj = βcj−1 + αcj + βcj+1 (34)

Then, (c1, ..., cN) are the terms from 1 to N of the sequence (cj)j∈N fulfilling

c0 = 0 & cN+1 = 0 ∀j ∈ N, βcj + (α− E)cj+1 + βcj+2 = 0 (35)
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We have a linearly recursive sequence of order two and it is known from that the general term
of such sequence can be expressed as a function of the roots of the characteristic polynomial
associated to the sequence, which is in this case

β + (α− E)r + βr2 = 0 (36)

If the characteristic polynomial admits two distinct roots, the general term would be

ck = λrk1 + µrk2 (37)

while if there is a double root r0 = r1 = r2, it would be

ck = (λ+ µk)rk0 (38)

with λ and µ ∈ C.

The solution of the characteristic polynomial cannot be the double root 0, as it would give
(cj)j∈N ≡ (0)j∈N. However, if (0)j∈J1,NK is the only solution of (35) it means that E is not an
Eigenvalue. Indeed, an Eigenvalue is, by definition, associated to a non-null Eigenvector.
If the solution would be a non-null double root, according to the boundary conditions (36)
and (37), we would find by injecting them in (41)

λ = 0 and µ = 0 (39)

then, we would also have (cj)j∈N ≡ (0)j∈N. Therefore, the characteristic polynomial must
admit two distinct roots.

If one of the two distinct roots was, for instance, r2 = 0, (40) would become

ck = λrk1 (40)

With the boundary conditions (36), we would then have λ = 0 and thus (cj)j∈N ≡ (0)j∈N.
Hence, the characteristic polynomial must admits two distinct non-null roots.

Furthermore, by injecting the boundary conditions (36) and (37) in (40), we have{
c0 = λ+ µ = 0

cN+1 = λrN+1
1 + µrN+1

2 = 0
(41)

⇔{
λ = −µ
( r1
r2

)N+1 = 1
(42)

Then, r1
r2

is an (N + 1)th root of unity, that is,

r1
r2

= ei
2nπ
N+1 with n ∈ J1, NK (43)

Thus,
|r2| = |r1| (44)
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Additionally, since the coefficients in the characteristic polynomial are real numberss, the
roots are conjugated, that is,

r̄2 = r1 (45)

It exists θ such that r1 and r2 can be written{
r1 = |r1|eiθ

r2 = |r1|e−iθ
(46)

Therefore,
r1
r2

= ei2θ (47)

Then, with (46)

θ =
nπ

(N + 1)
(48)

As r1 and r2 are the roots of the characteristic polynomial (39), their product and sum
can be expressed as a function of the coefficients{

r1r2 = β
β

= 1

r1 + r2 = −α−E
β

(49)

but because r1 and r2 are conjugated we also have

r1r2 = r1r̄1 = |r1|2 (50)

⇒
|r1| = 1 (51)

and

r1 + r2 = r1 + r̄1 = 2 Re{r1} (52)

= 2 Re
{
ei

nπ
(N+1)

}
(53)

= 2 Re

{
cos (

nπ

(N + 1)
) + i sin (

nπ

(N + 1)
)

}
(54)

= 2 cos (
nπ

(N + 1)
) (55)

⇒

2 cos (
nπ

(N + 1)
) = −α− E

β
(56)

Therefore, E is quantified

En = α + 2β cos (
n

N + 1
π) with n ∈ J1, NK (57)

Each En is associated to the MO built from the LCAO of 2pz orbitals with the coefficients

ck = λ(ei
knπ

(N+1) + e−i
knπ

(N+1) ) = λ2i sin (
knπ

N + 1
) with k ∈ J1, NK (58)

where λ can be determined using the normalization condition 〈Ψn|Ψn〉 = 1.
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