

Quantum States of π -Electrons in Polyacetylene

Lucile Chassat - Samuel Van Gele

January 2021

1 LCAO Approach to Linear π -Conjugated Systems

A simple MO treatment to a linear chain of N sp^2 -hybridized carbon atoms describes the π molecular orbitals as a set of linear combinations of the constituting p_z atomic orbitals, the members of the basis set.

$$\Phi_i = \sum_j c_{ij} \psi_{ij}, \quad \text{with } i, j = 1 \dots N \quad (1)$$

This results in a set of linear equations that can be written in matrix form and solved from the secular determinant:

$$\begin{vmatrix} \alpha_{11} - E & \beta_{21} - ES_{21} & \dots & \beta_{N1} - ES_{N1} \\ \beta_{12} - ES_{12} & \alpha_{22} - E & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{1N} - ES_{1N} & \vdots & \dots & \alpha_{NN} - E \end{vmatrix} = 0 \quad (2)$$

In the case of molecule where $N > 2$, the full MO treatment becomes more difficult to solve manually as the secular determinant becomes large but can be straightforwardly done using mathematical software.

2 The Electron in a 1D Box Model

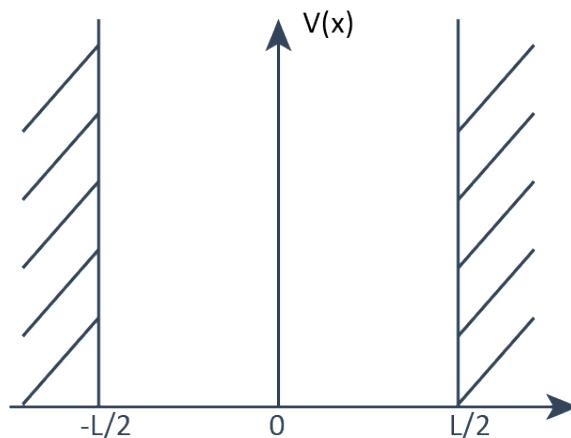


Figure 1: Schematic representation of the potential of a particle in a one-dimensional box with infinite boundary potential

In a first approximation, a polyacetylene molecule can be considered as a one-dimensional chain of carbons. An electron in this molecule contributing to its π -bonding can be regarded as free to roam along this one-dimensional segment in space, but is not allowed to leave the segment boundaries. With this approximation, one can reason that the quantum states in the poly(acetylene) molecule with N atoms can be approximated by the quantum states of an electron in a potential well of size $L = (N - 1)a$ with infinite boundary potential, where a is the interatomic distance assumed to be equal between all carbons of the molecule. We can define such a potential well as a function of a spatial coordinate which lies along the molecule axis (Figure 1).

The probability of finding the electron outside of the well is 0, i.e. $|\Psi|^2 = 0$. The boundary conditions are as follows:

$$\Psi\left(\frac{L}{2}\right) = \Psi\left(-\frac{L}{2}\right) = 0 \quad (3)$$

because

$$\Psi(x) = 0 \quad \forall \quad \frac{L}{2} \leq x \quad \& \quad x \leq -\frac{L}{2} \quad (4)$$

So we are looking for $\Psi(x)$ such that

$$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi(x) = E(x) \Psi(x) \quad \forall \quad x \in \left[-\frac{L}{2}, \frac{L}{2}\right] \quad (5)$$

By introducing the wave number k

$$k = \sqrt{\frac{2mE(x)}{\hbar^2}} \quad (6)$$

The equation becomes the equation of the harmonic oscillator

$$\Psi''(x) = -k^2 \Psi(x) \quad (7)$$

This equation has the general solution

$$\Psi(x) = A \sin(kx) + B \cos(kx) \quad (8)$$

which imposes the shape of the wavefunction. A mathematical consequence of the symmetry of the potential well is that $\Psi(x)$ must have a defined parity, i.e. the function must be either odd or even. We have then

$$A = 0 \quad \text{or} \quad B = 0 \quad (9)$$

$$\Psi(x) = B \cos(kx) \quad \text{or} \quad \Psi(x) = A \sin(kx) \quad (10)$$

With $\Psi(\pm \frac{L}{2}) = 0$ we have

$$B \cos\left(k \frac{L}{2}\right) = 0 \quad \text{or} \quad A \sin\left(k \frac{L}{2}\right) = 0 \quad (11)$$

\Rightarrow

$$kL = (2n + 1)\pi \quad \text{or} \quad kL = 2n\pi \quad (12)$$

The wavenumber is thus quantified

$$k = \frac{n\pi}{L} \quad n \in \mathbb{N} \quad (13)$$

However, n cannot take all allowed values as some solutions would have no physical sense. Indeed, $n = 0$ is excluded because $\Psi(x) = 0$ everywhere and thus the probability to find the electron would be null, $|\Psi(x)|^2 = 0$. Moreover, Also n and $-n$ give rise to the same quantum states

$$\begin{cases} \text{If } \Psi(x) \text{ is even } \Psi_{-n}(x) = \Psi_{+n}(x) \quad \forall x \\ \text{If } \Psi(x) \text{ is odd } \Psi_{-n}(x) = e^{i\pi} \Psi_{+n}(x) \quad \forall x \end{cases} \quad (14)$$

In both cases

$$|\Psi_{+n}(x)|^2 = |\Psi_{-n}(x)|^2 \quad \forall x \quad (15)$$

Thus the quantum numbers $n \in \mathbb{N}^{+*}$, that is, $n \in \{1, +\infty\}$. With (6) and (13) we now know that k is quantified and we can conclude that E is independent of x but quantified, as well. Indeed,

$$\sqrt{\frac{2mE_n}{\hbar^2}} = \frac{n\pi}{L} \Leftrightarrow E_n = \frac{\pi^2 \hbar^2}{2mL} n^2 = E_1 n^2 \quad (16)$$

Now that we have found an expression for E , we can also determine A and B . The probability that an electron, occupying the energy level n , is found anywhere in space is $|\Psi_n|^2 = 1$. With the consideration of (4),

$$|\Psi_n|^2 = \langle \Psi_n | \Psi_n \rangle \quad (17)$$

$$= \int_{-\infty}^{+\infty} \Psi_n^*(x) \Psi_n(x) dx \quad (18)$$

$$= \int_{-\frac{L}{2}}^{+\frac{L}{2}} \Psi_n^*(x) \Psi_n(x) dx \quad (19)$$

For the case where n is odd, because of the boundary conditions (3), $\Psi_n(x)$ will take the following form

$$\Psi_n(x) = B \cos\left(\frac{n\pi}{L}x\right) \quad (20)$$

Thus

$$|\Psi_n|^2 = \int_{-\frac{L}{2}}^{+\frac{L}{2}} B^* \cos\left(\frac{n\pi}{L}x\right) B \cos\left(\frac{n\pi}{L}x\right) dx \quad (21)$$

$$= |B|^2 \int_{-\frac{L}{2}}^{+\frac{L}{2}} \cos^2\left(\frac{n\pi}{L}x\right) dx \quad (22)$$

$$= |B|^2 \int_{-\frac{L}{2}}^{+\frac{L}{2}} \left(\frac{1}{2} \cos\left(2\frac{n\pi}{L}x\right) + \frac{1}{2}\right) dx \quad (23)$$

using

$$\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y) \quad \text{and} \quad 1 = \cos^2(x) + \sin^2(x) \quad (24)$$

Continuing from (23)

$$= |B|^2 \left[\frac{1}{4} \sin\left(\frac{2n\pi x}{L}\right) + \frac{x}{2} + c \right]_{-\frac{L}{2}}^{+\frac{L}{2}} = |B|^2 \frac{L}{2} \quad (25)$$

Thus

$$|B|^2 \frac{L}{2} = 1 \Leftrightarrow B = \pm \sqrt{\frac{2}{L}} \quad (26)$$

Proceeding in the same way for an even n , we obtain

$$A = \pm \sqrt{\frac{2}{L}} \quad (27)$$

As for $+n$ and $-n$ we obtain the same quantum states, we can just take the positive value and we have thus obtained the solutions to the quantum states of a particle in a box in an infinite potential well of length L

$$\begin{cases} \Psi_n(x) = \sqrt{\frac{2}{L}} \cos\left(\frac{n\pi}{L}x\right) & \forall \text{ odd } n \in \mathbb{N}^{+*} \\ \Psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right) & \forall \text{ even } n \in \mathbb{N}^{+*} \end{cases} \quad (28)$$

Each associated with the energies

$$E_n = E_1 n^2 \quad , \quad E_1 = \frac{\pi^2 \hbar^2}{2mL^2} \quad (29)$$

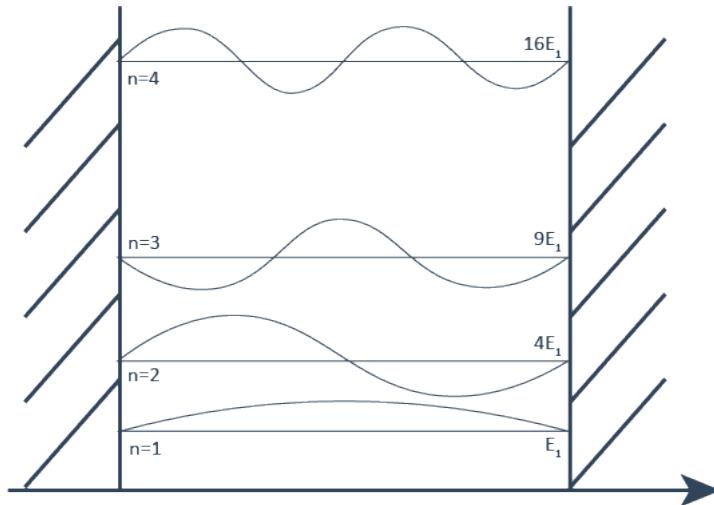


Figure 2: Wavefunctions and energy levels of a particle in a one-dimensional box

For the quantum states of a linear molecule with N carbon atoms, we noted $L = (N-1)a$. Moreover, we know that there are as many MO quantum states as there are constituting members of the basis set, so in this case N $2p_z$ atomic orbitals. The final solution is thus

$$\begin{cases} \Psi_n(x) = \sqrt{\frac{2}{(N-1)a}} \cos\left(\frac{n\pi}{(N-1)a}x\right) & \forall \text{ odd } n \in \{1, \dots, N\} \\ \Psi_n(x) = \sqrt{\frac{2}{(N-1)a}} \sin\left(\frac{n\pi}{(N-1)a}x\right) & \forall \text{ even } n \in \{1, \dots, N\} \end{cases} \quad (30)$$

Each associated with the energies

$$E_n = E_1 n^2 \quad , \quad E_1 = \frac{\pi^2 \hbar^2}{2m(N-1)^2 a^2} \quad (31)$$

3 The Hückel Method

While the electron in a 1D box model correctly accounts for quantization, the obtained energy levels significantly deviate from experimental values. A somewhat more rigorous approach is given by the Hückel Method, which is a further simplification of the LCAO approach. This method is specific to the case of π -conjugated molecules and aims to describe only the π molecular orbitals resulting from an interaction of the constituting $2p_z$ orbitals, independently of the framework of σ bonds. Then, it is assumed that there is no overlap between distinct $2p_z$ orbitals as well as that any Hamiltonian integral vanishes if it involves atoms i and j that are not nearest neighbours. Furthermore, it states that all similar interactions are equal for all orbitals, ie. $\forall i \in \llbracket 1, N \rrbracket \quad \alpha_{ii} = \alpha \text{ and } \beta_{i,i+1} = \beta$

Therefore, in this model the secular equation in the case of the poly(acetylene) molecule with N atoms becomes

$$\begin{vmatrix} \alpha - E & \beta & 0 & \cdots & 0 \\ \beta & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \beta \\ 0 & \cdots & 0 & \beta & \alpha - E \end{vmatrix} = 0 \quad (32)$$

With N rows and N columns in the determinant. Solving this secular equation, that is, finding the E_n for which it is fulfilled, is equivalent to solving the system of equations from which the determinant was actually deduced, which involve the coefficients (c_1, \dots, c_N) in the LCAO describing the MO. This system can be rewritten in matrix form as the following eigenvalue equation

$$\begin{pmatrix} \alpha & \beta & 0 & \cdots & 0 \\ \beta & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \beta \\ 0 & \cdots & 0 & \beta & \alpha \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_N \end{pmatrix} = E \begin{pmatrix} c_1 \\ \vdots \\ c_N \end{pmatrix} \Leftrightarrow \mathbf{T}\mathbf{C} = E\mathbf{C} \quad (33)$$

By construction of the MO, we have $c_0 = c_{N+1} = 0$ as boundary conditions. With $j \in \llbracket 1, N \rrbracket$, the product of j^{th} row of \mathbf{T} with the vector \mathbf{C} , the j^{th} component of the vector $E\mathbf{C}$, corresponds to

$$Ec_j = \beta c_{j-1} + \alpha c_j + \beta c_{j+1} \quad (34)$$

Then, (c_1, \dots, c_N) are the terms from 1 to N of the sequence $(c_j)_{j \in \mathbb{N}}$ fulfilling

$$c_0 = 0 \quad \& \quad c_{N+1} = 0 \quad \forall j \in \mathbb{N}, \quad \beta c_j + (\alpha - E)c_{j+1} + \beta c_{j+2} = 0 \quad (35)$$

We have a linearly recursive sequence of order two and it is known from that the general term of such sequence can be expressed as a function of the roots of the characteristic polynomial associated to the sequence, which is in this case

$$\beta + (\alpha - E)r + \beta r^2 = 0 \quad (36)$$

If the characteristic polynomial admits two distinct roots, the general term would be

$$c_k = \lambda r_1^k + \mu r_2^k \quad (37)$$

while if there is a double root $r_0 = r_1 = r_2$, it would be

$$c_k = (\lambda + \mu k)r_0^k \quad (38)$$

with λ and $\mu \in \mathbb{C}$.

The solution of the characteristic polynomial cannot be the double root 0, as it would give $(c_j)_{j \in \mathbb{N}} \equiv (\mathbf{0})_{j \in \mathbb{N}}$. However, if $(\mathbf{0})_{j \in \llbracket 1, N \rrbracket}$ is the only solution of (35) it means that E is not an Eigenvalue. Indeed, an Eigenvalue is, by definition, associated to a non-null Eigenvector. If the solution would be a non-null double root, according to the boundary conditions (36) and (37), we would find by injecting them in (41)

$$\lambda = 0 \quad \text{and} \quad \mu = 0 \quad (39)$$

then, we would also have $(c_j)_{j \in \mathbb{N}} \equiv (\mathbf{0})_{j \in \mathbb{N}}$. Therefore, the characteristic polynomial must admit two distinct roots.

If one of the two distinct roots was, for instance, $r_2 = 0$, (40) would become

$$c_k = \lambda r_1^k \quad (40)$$

With the boundary conditions (36), we would then have $\lambda = 0$ and thus $(c_j)_{j \in \mathbb{N}} \equiv (\mathbf{0})_{j \in \mathbb{N}}$. Hence, the characteristic polynomial must admits two distinct non-null roots.

Furthermore, by injecting the boundary conditions (36) and (37) in (40), we have

$$\begin{cases} c_0 = \lambda + \mu = 0 \\ c_{N+1} = \lambda r_1^{N+1} + \mu r_2^{N+1} = 0 \end{cases} \quad (41)$$

\Leftrightarrow

$$\begin{cases} \lambda = -\mu \\ \left(\frac{r_1}{r_2}\right)^{N+1} = 1 \end{cases} \quad (42)$$

Then, $\frac{r_1}{r_2}$ is an $(N + 1)$ th root of unity, that is,

$$\frac{r_1}{r_2} = e^{i \frac{2n\pi}{N+1}} \quad \text{with } n \in \llbracket 1, N \rrbracket \quad (43)$$

Thus,

$$|r_2| = |r_1| \quad (44)$$

Additionally, since the coefficients in the characteristic polynomial are real numbers, the roots are conjugated, that is,

$$\bar{r}_2 = r_1 \quad (45)$$

It exists θ such that r_1 and r_2 can be written

$$\begin{cases} r_1 = |r_1|e^{i\theta} \\ r_2 = |r_1|e^{-i\theta} \end{cases} \quad (46)$$

Therefore,

$$\frac{r_1}{r_2} = e^{i2\theta} \quad (47)$$

Then, with (46)

$$\theta = \frac{n\pi}{(N+1)} \quad (48)$$

As r_1 and r_2 are the roots of the characteristic polynomial (39), their product and sum can be expressed as a function of the coefficients

$$\begin{cases} r_1 r_2 = \frac{\beta}{\beta} = 1 \\ r_1 + r_2 = -\frac{\alpha - E}{\beta} \end{cases} \quad (49)$$

but because r_1 and r_2 are conjugated we also have

$$\begin{aligned} r_1 r_2 &= r_1 \bar{r}_1 = |r_1|^2 \\ &\Rightarrow \\ |r_1| &= 1 \end{aligned} \quad (50)$$

and

$$r_1 + r_2 = r_1 + \bar{r}_1 = 2 \operatorname{Re}\{r_1\} \quad (52)$$

$$= 2 \operatorname{Re}\left\{e^{i\frac{n\pi}{(N+1)}}\right\} \quad (53)$$

$$= 2 \operatorname{Re}\left\{\cos\left(\frac{n\pi}{(N+1)}\right) + i \sin\left(\frac{n\pi}{(N+1)}\right)\right\} \quad (54)$$

$$= 2 \cos\left(\frac{n\pi}{(N+1)}\right) \quad (55)$$

$$\Rightarrow \quad 2 \cos\left(\frac{n\pi}{(N+1)}\right) = -\frac{\alpha - E}{\beta} \quad (56)$$

Therefore, E is quantified

$$E_n = \alpha + 2\beta \cos\left(\frac{n}{N+1}\pi\right) \text{ with } n \in \llbracket 1, N \rrbracket \quad (57)$$

Each E_n is associated to the MO built from the LCAO of $2p_z$ orbitals with the coefficients

$$c_k = \lambda(e^{i\frac{kn\pi}{(N+1)}} + e^{-i\frac{kn\pi}{(N+1)}}) = \lambda 2i \sin\left(\frac{kn\pi}{N+1}\right) \text{ with } k \in \llbracket 1, N \rrbracket \quad (58)$$

where λ can be determined using the normalization condition $\langle \Psi_n | \Psi_n \rangle = 1$.